

sary to determine χ from (4) and substitute its value in (16). If λ_0/D is greater than the right-hand side of (16), side coupling is preferable; if λ_0/D is less, then end coupling will give larger gaps.

Finally, in a practical design it is usually necessary that

$$\frac{\lambda_0'}{2} > D \quad (19)$$

in order to prevent the generation of TM modes [7] and so minimize loss by radiation. By rearranging (19) and replacing λ_0' by $\lambda_0/\sqrt{\epsilon_r}$, one imposes a further constraint on the permissible range of the λ_0/D ratio for end-coupled filters and for all values of characteristic impedance:

$$\frac{\lambda_0}{D} > 2\sqrt{\epsilon_r}. \quad (20)$$

To facilitate selection of the filter type, a graph has been prepared with λ_0'/D as a function of $\sqrt{\epsilon_r} Z_0$ (Fig. 5), incorporating (14), (16), and (20).

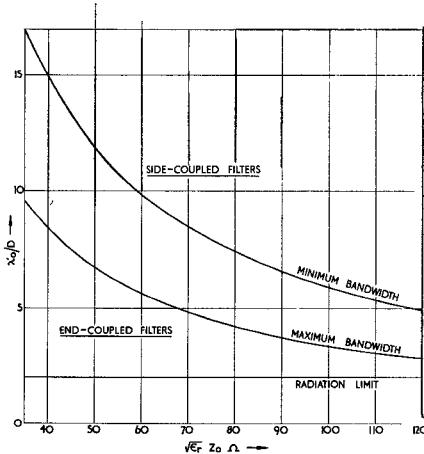


Fig. 5. λ_0'/D as a function of $\sqrt{\epsilon_r} Z_0$ for complete bandwidth range.

ACKNOWLEDGMENT

The permission of the Australian Post Office Research Laboratories to publish this correspondence is acknowledged.

J. K. RICHARDSON
Microwave Techniques Div.
P.M.G. Research Labs.
Melbourne, Australia

REFERENCES

- [1] S. B. Cohn, "Direct-coupled-resonator filters," *Proc. IRE*, vol. 45, pp. 187-196, February 1957.
- [2] E. H. Bradley, "Design and development of strip-line filters," *IRE Trans. on Microwave Theory and Techniques*, vol. MTT-4, pp. 86-93, April 1956.
- [3] S. B. Cohn, "Parallel coupled strip line resonator filters," *Onde Elec. (France)*, pp. 140-146, October 1957.
- [4] H. M. Altschuler and A. A. Oliner, "Discontinuities in the Center Conductor of Symmetric Strip Transmission Line," *IRE Trans. on Microwave Theory and Techniques*, vol. MTT-8, pp. 328-339, May 1960.
- [5] A. A. Oliner, "Equivalent circuits for discontinuities in balanced strip transmission line," *IRE Trans. on Microwave Theory and Techniques*, vol. MTT-3, pp. 134-143, March 1955.
- [6] S. B. Cohn, "Shielded coupled-strip transmission line," *IRE Trans. on Microwave Theory and Techniques*, vol. MTT-3, pp. 29-38, October 1955.
- [7] K. S. Packard, "Optimum impedance and dimensions for strip transmission line," *IRE Trans. on Microwave Theory and Techniques*, vol. MTT-5, pp. 244-247, October 1957.

An Interesting Impedance Matching Network

Any load impedance can be transformed to a real impedance by a $\lambda/8$ transformer whose characteristic impedance is equal to the magnitude of the load impedance.

The locus of a normalized load impedance, as a function of the characteristic impedance of the feed line, is a constant (X/R) contour on the Smith chart. Further, a constant (X/R) contour is a circular segment drawn through the points zero and infinity. The point of closest approach of any constant (X/R) contour to the $(Z/Z_0)=1$ point, minimum $|\Gamma|$, takes place along a straight line drawn from $(Z/Z_0)=j$ to $(Z/Z_0)=-j$, or $\lambda/8$ away from the real axis. Therefore, if any load is fed by a line whose characteristic impedance minimizes the magnitude of the reflection coefficient at the load, the normalized impedance $\lambda/8$ away from the load will be pure real.

Consider the matching network in Fig. 1.

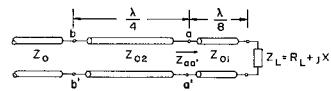


Fig. 1. Load-line impedance match.

The squared magnitude of the reflection coefficient at the load is given by

$$|\Gamma|^2 = \frac{|Z_L|^2 - 2R_L Z_{01} + Z_{01}^2}{|Z_L|^2 + 2R_L Z_{01} + Z_{01}^2} \quad (1)$$

where

$$R_L = \operatorname{Re}\{Z_L\}.$$

We may write

$$|\Gamma|^2 = 1 - \delta \quad (2)$$

where

$$\delta = \frac{4R_L Z_{01}}{|Z_L|^2 + 2R_L Z_{01} + Z_{01}^2}. \quad (3)$$

Then

$$\frac{\partial \delta}{\partial Z_{01}} = 0 \quad (4)$$

implies that

$$(|Z_L|^2 + 2R_L Z_{01} + Z_{01}^2)(4R_L) - (4R_L Z_{01})(2R_L + 2Z_{01}) = 0 \quad (5)$$

or

$$Z_{01}^2 = |Z_L|^2. \quad (6)$$

Therefore, $|\Gamma|^2$ is a minimum if $Z_{01} = |Z_L|$. Since $|\Gamma| < 1$, $|\Gamma|$ will also be minimized by the same value of Z_{01} .

The driving point impedance of the $\lambda/8$ transformer, $Z_{aa'}$ in Fig. 1 is

$$Z_{aa'} = \frac{R_L}{1 - \frac{X_L}{|Z_L|}} \quad (7)$$

when

$$Z_{01} = |Z_L|.$$

Manuscript received December 5, 1966.

Thus if the Q of the load impedance is high,

$$Z_{aa'} \cong \begin{cases} \frac{R_L}{2}, & X_L < 0 \\ 2X_L Q_L, & X_L > 0 \end{cases} \quad (8)$$

where

$$Q_L = \frac{X_L}{R_L}. \quad (9)$$

The impedance of the quarter-wave transformer in Fig. 1 may then be found from

$$Z_{01} = \sqrt{Z_{aa'} Z_0} \quad (10)$$

as is well known.

By application of the same principles, a conjugate match between two impedances Z_G and Z_L may be accomplished in a $\lambda/2$ length of line as shown in Fig. 2, where

$$Z_{01} = |Z_L| \quad (11)$$

$$Z_{02} = \left[\frac{R_L R_G |Z_L| |Z_G|}{(|Z_L| - X_L)(|Z_G| - X_G)} \right]^{1/2} \quad (12)$$

$$Z_{03} = |Z_G| \quad (13)$$

in which

$$Z_L = R_L + jX_L \quad (14)$$

$$Z_G = R_G + jX_G. \quad (15)$$

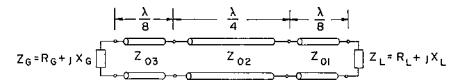


Fig. 2. Source-load impedance match.

These circuits do not constitute minimum length solutions to the impedance matching problem. They do provide a simple answer to the synthesis problem in cases where frequency response is not the primary concern, as is the case in many frequency multiplier design problems. In addition, the line lengths involved are always known in advance. This property has been found to be particularly useful in microwave circuit design when the exact value of the input impedance is not a priori known.

DONALD H. STEINBRECHER
M.I.T. Research Lab. of Electronics
Cambridge, Mass.

A Laminar Slow-Wave Coupler and Its Application to Indium Antimonide

The purpose of this correspondence is to describe a technique for coupling energy between a waveguide mode and a semiconductor (or gas discharge) slow wave that has a longitudinal component of microwave electric

Manuscript received January 3, 1967. The research reported here was sponsored by the Air Force Avionics Laboratory, Research and Technology Division, U. S. Air Force Systems Command, Wright-Patterson AFB, Ohio, under Contract AF-33(615)-1608, and by RCA Laboratories, Princeton, N. J.